FP1 Graphs Rational Functions Questions

4	A	curve	: ł	nas	eq	ua	tio	n
---	---	-------	-----	-----	----	----	-----	---

$$y = \frac{6x}{x - 1}$$

- (a) Write down the equations of the two asymptotes to the curve. (2 marks)
- (b) Sketch the curve and the two asymptotes. (4 marks)
- (c) Solve the inequality

$$\frac{6x}{x-1} < 3 \tag{4 marks}$$

9 A curve C has equation

$$y = \frac{(x+1)(x-3)}{x(x-2)}$$

- (a) (i) Write down the coordinates of the points where C intersects the x-axis. (2 marks)
 - (ii) Write down the equations of all the asymptotes of C. (3 marks)
- (b) (i) Show that, if the line y = k intersects C, then

$$(k-1)(k-4) \geqslant 0 \tag{5 marks}$$

(ii) Given that there is only one stationary point on C, find the coordinates of this stationary point.

(No credit will be given for solutions based on differentiation.) (3 marks)

(c) Sketch the curve C. (3 marks)

5 A curve has equation

$$y = \frac{x}{x^2 - 1}$$

- (a) Write down the equations of the three asymptotes to the curve. (3 marks)
- (b) Sketch the curve.

(You are given that the curve has no stationary points.) (4 marks)

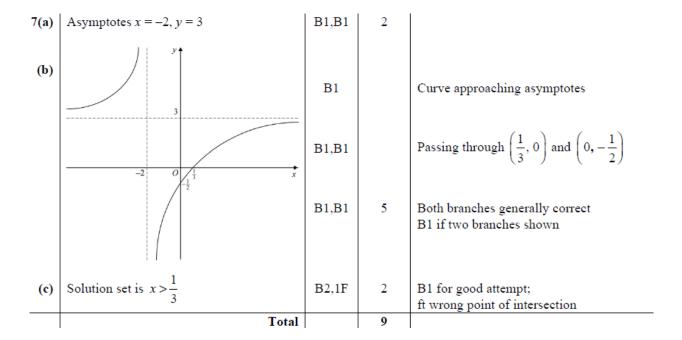
(c) Solve the inequality

$$\frac{x}{x^2 - 1} > 0 \tag{3 marks}$$

7 A curve has equation

$$y = \frac{3x - 1}{x + 2}$$

- (a) Write down the equations of the two asymptotes to the curve. (2 marks)
- (b) Sketch the curve, indicating the coordinates of the points where the curve intersects the coordinate axes. (5 marks)
- (c) Hence, or otherwise, solve the inequality


$$0 < \frac{3x - 1}{x + 2} < 3$$
 (2 marks)

FP1 Graphs Rational Functions Answers

4(a)	Asymptotes $x = 1, y = 6$		B1B1	2	
(b)	Curve (correct general shape)		M1		SC Only one branch:
	Curve passing through origin		A1		B1 for origin
	Both branches approaching $x = 1$		A1		B1 for approaching both asymptotes
	Both branches approaching $y = 6$		A1	4	(Max 2/4)
(c)	Correct method		M1		
	Critical values ±1		B1B1		From graph or calculation
	Solution set $-1 \le x \le 1$		A1√	4	ft one error in CVs; NMS
					4/4 after a good graph
		Total		10	
		Total		10	
		Total		10	
9(a)(i) Intersections at (-1, 0), (3, 0)	Total	B1B1	2	Allow $x = -1$, $x = 3$
9(a)(i		Total	B1B1 B1 × 3	1	Allow $x = -1, x = 3$
	Asymptotes $x = 0, x = 2, y = 1$	Total		2	Allow $x = -1$, $x = 3$ M1 for clearing denominator

	Total		16	
	Other two branches correct	B1	3	3 asymptotes shown
	Middle branch correct	B1		Coordinates of SP not needed
(c)	Curve with three branches	B1		approaching vertical asymptotes
	$3x^2 - 6x + 3 = 0$, so $x = 1$	M1A1	3	A0 if other point(s) given
(ii)	y = 4 at SP	B1		
	$\Delta = 4(k-1)(k-4)$, hence result	m1A1	5	convincingly shown (AG)
	\Rightarrow $(k-1)x^2 + (-2k+2)x + 3 = 0$	A1√		ft numerical error
(b)(i)	$y = k \Rightarrow kx^2 - 2kx = x^2 - 2x - 3$	M1A1		M1 for clearing denominator
(ii)	Asymptotes $x = 0$, $x = 2$, $y = 1$	B1 × 3	3	
9(a)(i)	Intersections at $(-1, 0)$, $(3, 0)$	B1B1	2	Allow $x = -1$, $x = 3$

5(a)	Asymptotes $y = 0$, $x = -1$, $x = 1$	B1 × 3	3	
(b)	Three branches approaching two vertical asymptotes	B1		Asymptotes not necessarily drawn
	Middle branch passing through O	B1		with no stationary points
	Curve approaching $y = 0$ as $x \to \pm \infty$	B1		
	All correct	B1	4	with asymptotes shown and curve approaching all asymptotes correctly
(c)	Critical values $x = -1$, 0 and 1	B1		
	Solution set $-1 \le x \le 0$, $x \ge 1$	M1A1	3	M1 if one part correct or consistent with c's graph
	Total		10	

